
Difference between python 2 and python 3
 Key Differences

Feature Python 2 Python 3

Release Year 2000 2008

Support End of life in 2020 (no updates) Actively supported

Print Statement print "Hello" (statement) print("Hello") (function)

Division 5/2 = 2 (integer division by default) 5/2 = 2.5 (true division by default)

Unicode Text is ASCII by default, use u"Hello" for Unicode Strings are Unicode by default ("Hello")

xrange / range range() returns a list, xrange() is for iteration Only range(), works like xrange() (lazy sequence)

Iterators .next() method used next() function used

Error Handling except Exception, e: except Exception as e:

Input raw_input() for strings, input() evaluates expression input() always returns string

Integer Types Separate int and long types Only int (no limit, arbitrary precision)

Libraries Many old libraries only worked with Python 2 Modern libraries support Python 3

Community Deprecated Fully active

Python 2 → Legacy, outdated, no official support.
Python 3 → Future-proof, cleaner syntax, Unicode by default, better division, more consistent.

●​ what is indentation in python and why is it important?
Indentation means adding spaces or tabs at the beginning of a line.In many languages (like Java, C, C++),
indentation is just for readability, and the compiler ignores it.But in Python, indentation is mandatory and
defines the code blocks (like loops, functions, conditionals, and classes).

 Why is it important?

1.​ Defines Code Blocks :- In Python, there are no {} braces or end keywords.Indentation tells Python where a
block starts and ends.

Example:​
if True:
 print("Inside block")
 print("Still inside")
print("Outside block")

2.​ Avoids Ambiguity :- Forces developers to write clean, structured, and readable code.
3.​ Readability & Consistency:- Python follows the philosophy of being clean and human-readable.“There

should be one—and preferably only one—obvious way to do it.” (Zen of Python).
Interview-Safe Answer
“Indentation in Python refers to the spaces at the beginning of a line that define code blocks. Unlike other
languages that use curly braces, Python uses indentation to determine the grouping of statements in
loops, conditionals, and functions. It is important because without proper indentation, Python code will
throw errors. This enforces readability and consistency across Python codebases.”

●​ Mutable vs immutable types (examples)

“Mutable objects in Python can be modified after creation, like lists, dictionaries, and sets. Immutable
objects cannot be changed after creation—examples include strings, tuples, and numbers. With
immutables, any modification creates a new object in memory, whereas mutables change in place.”
Mutable
a = [1, 2, 3]
print(id(a)) # e.g. 140352
a.append(4)
print(id(a)) # same id (changed in place)
Immutable
b = "hello"
print(id(b)) # e.g. 150120
b = b + " world"
print(id(b)) # different id (new object created)

140347612345200
140347612347600
First print → the original string "hello" has some memory address (e.g., 140347612345200).
Second print → after concatenation, a new string "hello world" is created at a different memory address
(e.g., 140347612347600).
This proves that strings are immutable—a new object is created instead of modifying the old one.

●​ Explain python variable and scope (LEGB) Rule Python Variable
A variable is a name that refers to a value/object stored in memory.
Example:- x = 10 # x is a variable referring to the integer object 10 name = "Swapnil" Variable Scope.
Scope is the region of a program where a variable can be accessed. Python uses the LEGB rule to
determine the order in which it looks for a variable:

Letter Scope Type Description Example

L Local Inside the current function def func(): x = 5 → x is local

E Enclosing Variables in enclosing function(s)
(non-local)

Nested functions: def outer(): y = 10; def
inner(): print(y)

G Global Module-level variables x = 100; def func(): print(x)

B Built-in Python reserved names/functions len(), print(), int()

what is type casting in python?
“Type casting in Python is the process of converting a variable from one data type to another. It can be implicit
(automatic conversion by Python) or explicit (manual conversion using functions like int(), float(), str(), list(), etc.).
Implicit type casting usually happens with numeric types, while explicit casting allows you to safely convert between
compatible types.”
Implicit → automatic, safe, usually numeric types.
Explicit → manual, using type conversion functions.
Cannot convert incompatible types (e.g., int("abc") will raise ValueError).
Type Casting in Python :- Type casting means converting a value from one data type to another.Sometimes called
type conversion.
Why do we need it? :- To perform operations between different data types.To ensure correct input/output type.To
avoid errors in calculations or function calls.

Types of Type Casting
1. Implicit Type Casting (Type Conversion) :- Python automatically converts one data type to another without user
intervention.Usually happens with numeric types.
Example:
a = 5 # int
b = 2.0 # float
c = a + b # Python converts a → float
print(c) # 7.0
print(type(c)) # <class 'float'>

2. Explicit Type Casting :- User manually converts one type to another using built-in
functions.Common functions: int(), float(), str(), list(), tuple(), set(), etc.
Examples:
int to float
x = 10
y = float(x)
print(y, type(y)) # 10.0 <class 'float'>

float to int
a = 9.8
b = int(a)
print(b, type(b)) # 9 <class 'int'>

int to string
num = 100
s = str(num)
print(s, type(s)) # '100' <class 'str'>

string to list
text = "hello"
lst = list(text)
print(lst) # ['h', 'e', 'l', 'l', 'o']

Difference between List, Tuple, Set and Dictionary

Feature List Tuple Set Dictionary

Definition Ordered, mutable sequence of
items

Ordered, immutable sequence of
items

Unordered, mutable collection of
unique items

Unordered, mutable collection of
key-value pairs

Syntax [1, 2, 3] (1, 2, 3) {1, 2, 3} {"a": 1, "b": 2}

Mutability Mutable → can add, remove,
update

Immutable → cannot change after
creation

Mutable → can add/remove
elements, but no duplicates

Mutable → can add/update/remove
key-value pairs

Duplicates Allowed Allowed Not allowed Keys unique, values can be
duplicated

Indexing /
Slicing

✅ Yes ✅ Yes ❌ No (unordered) ❌ No, but access via keys

Feature List Tuple Set Dictionary

Definition Ordered, mutable sequence of
items

Ordered, immutable sequence of
items

Unordered, mutable collection of
unique items

Unordered, mutable collection of
key-value pairs

Syntax [1, 2, 3] (1, 2, 3) {1, 2, 3} {"a": 1, "b": 2}

Mutability Mutable → can add, remove,
update

Immutable → cannot change after
creation

Mutable → can add/remove
elements, but no duplicates

Mutable → can add/update/remove
key-value pairs

Use Case /
Interview Tip

Use when order matters and
you may need to change
elements

Use for fixed data, faster than list,
can be dictionary keys

Use for unique elements,
membership testing fast

Use for key-value mapping, lookups
by key

1️⃣ List (mutable & ordered)
my_list = [1, 2, 3, 4]
my_list.append(5) # [1, 2, 3, 4, 5]
my_list[0] = 100 # [100, 2, 3, 4, 5]
2️⃣ Tuple (immutable & ordered)
my_tuple = (1, 2, 3)
my_tuple[0] = 100 # ❌ Error

3️⃣ Set (unordered, unique)
my_set = {1, 2, 3, 2}
print(my_set) # {1, 2, 3} (duplicates removed)
my_set.add(4) # {1, 2, 3, 4}

4️⃣ Dictionary (key-value mapping)
my_dict = {"a": 1, "b": 2}
my_dict["c"] = 3 # {"a": 1, "b": 2, "c": 3}
my_dict["a"] = 100 # {"a": 100, "b": 2, "c": 3}

In Python, a list is an ordered and mutable collection; a tuple is ordered but immutable. A set is an unordered
collection of unique elements, useful for membership testing, and a dictionary stores key-value pairs for fast lookups.
Lists and tuples maintain order, sets remove duplicates and are unordered, and dictionaries allow mapping from
unique keys to values.”
when to use list vs tuple?

Aspect List Tuple

Mutability Mutable → can change, add, remove elements Immutable → cannot change after creation

Use Case When you need a dynamic collection of items that may change
over time

When you need a fixed collection of items that
shouldn’t change

Performance Slower than tuple because of mutability overhead Faster than list → lightweight, optimized for
iteration

Memory Consumes more memory due to dynamic nature Consumes less memory

Hashability Cannot be used as dictionary keys (unless frozen) Can be used as dictionary keys (if all
elements are immutable)

Methods Many built-in methods like append(), remove(), pop() Fewer methods (mainly count, index)

Example 1: List

tasks = ["email", "meeting", "call"]
tasks.append("lunch")
print(tasks)
Output:
['email', 'meeting', 'call', 'lunch']
✅ The list was modified in place.
Example 2: Tuple
coordinates = (10.0, 20.0)
print(coordinates)
coordinates[0] = 15.0 # Uncommenting this will cause an error
Output:
(10.0, 20.0)
If you try to modify the tuple:
coordinates[0] = 15.0
Error:
TypeError: 'tuple' object does not support item assignment
This clearly shows:

●​ List → mutable → can change
●​ Tuple → immutable → cannot change

How to remove duplicates from the list ?
1️⃣ Using set()
my_list = [1, 2, 2, 3, 4, 4, 5]
unique_list = list(set(my_list))
print(unique_list) # Output: [1, 2, 3, 4, 5] (order may change)
2️⃣ Using dict.fromkeys() (preserves order)
my_list = [1, 2, 2, 3, 4, 4, 5]
unique_list = list(dict.fromkeys(my_list))
print(unique_list) # Output: [1, 2, 3, 4, 5]

●​ Use set() → fast, no order needed.
●​ Use dict.fromkeys() or loop with set → preserves order.
●​ For speed and if order doesn't matter: Use set().
●​ For preserving order and still being efficient: Use dict.fromkeys() or the list comprehension with a set.
●​ For explicit control or if elements are unhashable: Use the loop with a temporary list.
●​

what is dictionary comprehension?
●​ Dictionary comprehension is a compact way to create dictionaries in Python using a single line, similar to list

comprehension.
Syntax:- {key_expr: value_expr for item in iterable if condition}

Dictionary comprehension is a concise and efficient Python feature for creating dictionaries from iterables in a single
line, similar to list comprehensions but with curly braces {} and a key:value structure. It allows you to generate new
key-value pairs by transforming elements from an existing iterable, optionally filtering them with an if condition,
thereby replacing verbose for loops and if statements.
1️⃣ Basic Example
Create a dictionary of squares
squares = {x: x**2 for x in range(5)}
print(squares)
Output:
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
2️⃣ With Condition
Only even numbers

even_squares = {x: x**2 for x in range(5) if x % 2 == 0}
print(even_squares)
Output:{0: 0, 2: 4, 4: 16}
“Dictionary comprehension in Python is a concise way to create dictionaries using a single line of code, similar to list
comprehension. It allows you to define key-value pairs for each item in an iterable, optionally with a condition.”

●​ If asked “difference between list comprehension and dict comprehension”, you can say:
“List comprehension produces a list of values, while dictionary comprehension produces key-value pairs in a
dictionary. The main visual cue is the curly braces with a colon for dict: {key: value} vs brackets [value] for list.”
What is frozen set in python ?

●​ A frozenset is an immutable version of a set.Once created, you cannot add, remove, or modify
elements.Useful when you need a set that should not change or want to use it as a dictionary key or element
of another set

●​ Key Features
1.​ Immutable → cannot change after creation.
2.​ Supports all set operations like union, intersection, difference.
3.​ Can be used as a key in a dictionary (normal sets cannot).

🔹 Examples
1️⃣ Creating a frozenset
my_set = frozenset([1, 2, 3, 2])
print(my_set)
Output:- frozenset({1, 2, 3})
2️⃣ Trying to modify it
my_set.add(4) # ❌ AttributeError: 'frozenset' object has no attribute 'add'
3️⃣ Using frozenset as dictionary key
d = {frozenset([1,2,3]): "value"}
print(d)
Output: - {frozenset({1, 2, 3}): 'value'}

 When to Use

●​ When you need a set that should not change.
“A frozenset in Python is an immutable version of a set. It cannot be modified after creation but supports set
operations like union and intersection. It is hashable, so it can be used as a dictionary key or as an element of
another set.”
How is string slicing done in python?
String Slicing in Python

●​ Slicing lets you extract a substring from a string (or elements from lists, tuples, etc.) using indices.
●​ Syntax:

string[start:stop:step]

Parameter Description

start Starting index (inclusive). Defaults to 0 if omitted.

stop Ending index (exclusive). Slice goes up to stop-1.

step Step size (interval between elements). Defaults to 1.

s = "Python"
Basic slicing
print(s[0:4]) # 'Pyth' → from index 0 to 3
Omit start (from beginning)
print(s[:3]) # 'Pyt'
Omit stop (till end)
print(s[2:]) # 'thon'
Negative indices
print(s[-4:-1]) # 'tho' → counts from end

Step
print(s[0:6:2]) # 'Pto' → every 2nd character
Reverse string
print(s[::-1]) # 'nohtyP'

1.​ start is inclusive, stop is exclusive.
2.​ Negative indices count from the end (-1 is last character).
3.​ step can be negative → reverses the string or sequence.

Interview-Safe Answer
“In Python, string slicing allows you to extract a portion of a string using the syntax [start:stop:step]. The start index is
inclusive, the stop index is exclusive, and the step defines the interval between characters. You can also use negative
indices to slice from the end or use a negative step to reverse the string.”

Difference between break , continue , pass with examples
“break is used to exit a loop immediately, continue is used to skip the current iteration and move to the next, and pass
is a placeholder that does nothing. break and continue control loop flow, while pass is often used when code is
syntactically required but not implemented yet.”
ˇ

Keyword Action Typical Use Example

break Exit loop
immediately

Stop looping when condition met Exit a search when item found

continue Skip current
iteration

Ignore certain cases but continue loop Skip even numbers while printing

pass Do nothing Placeholder for future code Empty function, class, loop

 1. break in Python
Theory

●​ break is used to exit the nearest enclosing loop immediately, regardless of the loop condition.
●​ Commonly used when a condition is met and you want to stop looping.

Example
for i in range(1, 6):
 if i == 3:
 break
 print(i)

Output:
1
2
Explanation:

●​ When i == 3, the break statement executes.
●​ Loop terminates immediately; code after break inside the loop is not executed.

Interview Perspective
“Use break when you want to terminate a loop prematurely based on a condition.”

2. continue in Python
Theory

●​ continue skips the rest of the current iteration of the loop and moves to the next iteration.
●​ Useful when you want to ignore certain cases but continue looping.

Example
for i in range(1, 6):
 if i == 3:
 continue

 print(i)

Output:
1
2
4
5
Explanation:

●​ When i == 3, continue executes → skips the print statement for 3.
●​ Loop continues with i = 4.

Interview Perspective
“Use continue when you want to skip certain iterations but not exit the loop entirely.”

 3. pass in Python
Theory

●​ pass does nothing; it’s a placeholder.
●​ Often used when a statement is syntactically required but no action is needed.
●​ Common use cases: empty functions, loops, or classes during development.

Example
for i in range(1, 6):
 if i == 3:
 pass
 print(i)

Output:
1
2
3
4
5

Explanation:

●​ pass does nothing → loop continues normally.
●​ Useful as a placeholder for code to be implemented later.

Another Example (empty function):
def my_function():
 pass

●​ This is valid Python even though the function body is empty.
Interview Perspective
“Use pass as a placeholder when a statement is syntactically required but no action is needed. It is often used in
function or class definitions during development.”

For vs While loop
“for loop is used when you know the number of iterations or need to iterate over a sequence. while loop is used when
you don’t know the exact number of iterations and want to repeat a block until a condition becomes false.”
1. for loop
Theory

●​ Used to iterate over a sequence (like list, tuple, string, or range).
●​ Number of iterations is known or finite.

Syntax
for variable in sequence:
 # code block

Example 1: Iterating over a list

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
 print(fruit)

Output:
apple
banana
cherry

Example 2: Using range()
for i in range(1, 6):
 print(i)

Output:
1
2
3
4
5
When to use

●​ When you know how many times to loop or need to iterate over items.

2. while loop
Theory

●​ Repeats a block of code while a condition is true.
●​ Number of iterations is not necessarily known.

Syntax
while condition:
 # code block
Example 1: Basic while loop
i = 1
while i <= 5:
 print(i)
 i += 1
Output:
1
2
3
4
5
Example 2: Using user input
password = ""
while password != "secret":
 password = input("Enter password: ")
print("Access granted")

When to use

●​ When you don’t know how many times the loop will run, but need to loop until a condition changes.

Feature for loop while loop

Iteration Over sequence or range Based on a condition

Known iterations Yes No (could be infinite)

Use case Iterate list, string, range Repeat until condition met

Syntax for item in iterable: while condition:

“for loop is used when you know the number of iterations or need to iterate over a sequence. while loop is used when
you don’t know the exact number of iterations and want to repeat a block until a condition becomes false.”

how to use enumerate in for loop in python

The enumerate() function in Python is used within a for loop to iterate over an iterable (like a list, tuple, or string) while
simultaneously getting both the index and the value of each item. This avoids the need to manually manage a counter
variable.
“enumerate() in Python is used to loop over an iterable while keeping track of the index along with the value. It returns
pairs of (index, value), and we can also specify a starting index. It is more Pythonic and readable than manually using
range(len()).”

enumerate() adds a counter/index to an iterable (like list, tuple, or string).
It returns an enumerate object (which is iterable of pairs: (index, item)).
Often used in for loops when you need both index and value.
Syntax
enumerate(iterable, start=0)

●​ iterable → list, tuple, string, etc.
●​ start → index to start counting from (default = 0).

Basic Example
fruits = ["apple", "banana", "cherry"]

for index, fruit in enumerate(fruits):
 print(index, fruit)

Output:
0 apple
1 banana
2 cherry

Start index from 1
for index, fruit in enumerate(fruits, start=1):
 print(index, fruit)

Output:
1 apple
2 banana
3 cherry

With a string
for i, ch in enumerate("Python"):
 print(i, ch)

Output:
0 P
1 y
2 t

3 h
4 o
5 n
Cleaner and more Pythonic than using range(len(iterable)).Improves readability in loops. Avoids manually managing
counters.
range(len(iterable)) → more manual, less readable.
enumerate(iterable) → cleaner, Pythonic, gives index and value in one step.
enumerate(iterable, start=1) → useful for human-readable numbering.

what is zip() in python?
zip() in Python is used to combine multiple iterables element-wise. It returns an iterator of tuples, where each tuple
contains elements from the input iterables at the same position. If the iterables are of different lengths, zip() stops at
the shortest one. It’s commonly used for parallel iteration, creating dictionaries, or grouping data together.”
The zip() function in Python combines multiple iterables such as lists, tuples, strings, dict etc, into a single iterator of
tuples. Each tuple contains elements from the input iterables that are at the same position.
Let’s consider an example where we need to pair student names with their test scores:
names = ['John', 'Alice', 'Bob', 'Lucy']
scores = [85, 90, 78, 92]
​res = zip(names, scores)
print(list(res))
Output
[('John', 85), ('Alice', 90), ('Bob', 78), ('Lucy', 92)]
Explanation:

●​ zip() is used to combine the two lists into a single iterable 'res'
●​ Each element from names is paired with the corresponding element from scores
●​ list() converts the iterator from zip() into a list of tuples, making it easier to visualize or manipulate the

combined data.
Iterables of different Lengths
When using iterables of different lengths, the zip() will only pair up to the shortest iterable.
names = ['Alice', 'Bob', 'Charlie']
scores = [88, 94]
res = zip(names, scores)
print(list(res))

Output
[('Alice', 88), ('Bob', 94)]

Explanation: Here, zip() stops after pairing the two available score values with the first two name values. 'Charlie' is
left out since there’s no corresponding score value.
Unzipping data with zip()
We can also reverse the operation by unzipping the data using the * operator. Let’s see how that works:
a = [('Apple', 10), ('Banana', 20), ('Orange', 30)]
fruits, quantities = zip(*a)
​print(f"Fruits: {fruits}")
print(f"Quantities: {quantities}")

Output
Fruits: ('Apple', 'Banana', 'Orange')
Quantities: (10, 20, 30)
Explanation: Using the * operator, we can separates (unzip) the paired fruit names and their quantities back into their
respective sequences

How to define a function in python?
Defining a Function in Python

https://www.geeksforgeeks.org/python/python-difference-iterable-iterator/
https://www.geeksforgeeks.org/python/python-lists/
https://www.geeksforgeeks.org/python/python-tuples/
https://www.geeksforgeeks.org/python/python-string/
https://www.geeksforgeeks.org/python/python-dict-function/

In Python, a function is defined using the def keyword.​
Functions allow you to reuse code, organize logic, and make your program modular.
✅ Syntax
def function_name(parameters):
 """
 Optional docstring (description of the function)
 """
 # function body
 return value

●​ def → keyword to define a function
●​ function_name → identifier (name of the function)
●​ parameters → (optional) values passed into the function
●​ return → (optional) value sent back to the caller

Python Functions are a block of statements that does a specific task. The idea is to put some commonly or
repeatedly done task together and make a function so that instead of writing the same code again and again for
different inputs, we can do the function calls to reuse code contained in it over and over again.

Different Between *args and **kwargs?
Both *args and **kwargs are used in function definitions to handle variable-length arguments (when you don’t know
how many arguments will be passed).

Feature *args **kwargs

Meaning Arbitrary positional arguments Arbitrary keyword arguments

Data Structure Tuple Dictionary

Usage Variable number of values Variable number of key-value pairs

Example Call func(1, 2, 3) func(x=1, y=2)

Use *args when you want to handle extra positional arguments.
Use **kwargs when you want to handle extra named arguments.
*args → Non-keyword Variable Arguments

●​ Collects positional arguments into a tuple.
●​ Useful when you don’t know how many positional arguments will be passed.
●​ *args allows a function to accept an arbitrary number of non-keyworded, or positional, arguments.

Example:
def add_numbers(*args):
 print("Arguments:", args) # args is a tuple
 return sum(args)
print(add_numbers(2, 3, 5))
print(add_numbers(1, 2, 3, 4, 5))

🔹 Output:
Arguments: (2, 3, 5)
10
Arguments: (1, 2, 3, 4, 5)
15
Here, *args packed values (2, 3, 5) into a tuple.

**kwargs → Keyword Variable Arguments

●​ Collects keyword arguments into a dictionary.
●​ Useful when you don’t know how many keyword arguments will be passed.
●​ **kwargs allows a function to accept an arbitrary number of keyworded, or named, arguments.

●​ The ** before kwargs signifies that all keyword arguments passed to the function will be collected into a
dictionary named kwargs.

Example:
def print_user_info(**kwargs):
 print("Keyword Arguments:", kwargs) # kwargs is a dictionary
 for key, value in kwargs.items():
 print(f"{key}: {value}")
print_user_info(name="Swapnil", age=30, city="Pune")

Output:
Keyword Arguments: {'name': 'Swapnil', 'age': 30, 'city': 'Pune'}
name: Swapnil
age: 30
city: Pune

 Here, **kwargs packed arguments into a dictionary.
You can use both *args and **kwargs in the same function, but order matters:​
 def func(positional, *args, keyword_only, **kwargs)
Example:
def demo_function(a, b, *args, **kwargs):
 print("a:", a)
 print("b:", b)
 print("args:", args) # tuple
 print("kwargs:", kwargs) # dict

demo_function(1, 2, 3, 4, 5, x=10, y=20)

🔹 Output:
a: 1
b: 2
args: (3, 4, 5)
kwargs: {'x': 10, 'y': 20}
What is Recursion?
👉 Recursion is a programming technique where a function calls itself directly or indirectly to solve a problem.

●​ Each recursive call should bring the problem closer to a base case (the condition where the recursion
stops).

●​ Without a base case, recursion would run infinitely and cause a RecursionError.

The process in which a function calls itself directly or indirectly is called recursion and the corresponding function is
called a recursive function.
Recursion is when a function calls itself.
Requires a base case to avoid infinite calls.
Recursion is often used for problems that can be broken into smaller subproblems (e.g., factorial, Fibonacci,
tree/graph traversal, quicksort, mergesort).
Recursion can sometimes be less efficient than iteration (because of extra function calls and stack memory usage).
Python has a recursion depth limit (default ~1000).
def factorial(n):
 if n == 0: # base case
 return 1
 else:
 return n * factorial(n - 1) # recursive call
print(factorial(5)) # 5*4*3*2*1 = 120
🔹 Output:
120

What is a Lambda Function?
 A lambda function is a small, anonymous function in Python, defined using the keyword lambda.A lambda function in
Python is a small, anonymous function defined with the lambdakeyword. Unlike standard functions defined with def,
lambda functions are restricted to a single expression, which is implicitly returned. They do not require a name, hence
they are often referred to as "anonymous functions." syntax:-lambda arguments: expression
It can take any number of arguments but must have only one expression (evaluated and returned).

●​ Syntax:
lambda arguments: expression
Example:
square = lambda x: x * x
print(square(5)) # 25
1. Short, throwaway functions

●​ When you need a function only once, without formally defining it using def.​
Example:

print((lambda a, b: a + b)(5, 10)) # 15

Commonly Used Python Built-in Functions
Here are some of the most frequently used built-in functions (with quick examples):

✅ 1. len() → Get length
s = "python"
print(len(s)) # 6
✅ 2. type() → Check type
print(type(123)) # <class 'int'>
print(type([1, 2])) # <class 'list'>
✅ 3. id() → Memory address
x = 10
print(id(x))
✅ 4. max(), min() → Find max/min
nums = [3, 7, 1, 9]
print(max(nums)) # 9
print(min(nums)) # 1
✅ 5. sum() → Sum of iterable
nums = [1, 2, 3]
print(sum(nums)) # 6
✅ 6. sorted() → Return sorted list
nums = [5, 2, 8]
print(sorted(nums)) # [2, 5, 8]
print(sorted(nums, reverse=True)) # [8, 5, 2]
✅ 7. zip() → Combine iterables
names = ["A", "B", "C"]
scores = [90, 80, 70]
print(list(zip(names, scores)))
[('A', 90), ('B', 80), ('C', 70)]
✅ 8. enumerate() → Index with items
fruits = ["apple", "banana"]
for i, fruit in enumerate(fruits):
 print(i, fruit)

Output:
0 apple
1 banana
✅ 9. map() → Apply function
nums = [1, 2, 3]

squares = list(map(lambda x: x*x, nums))
print(squares) # [1, 4, 9]
✅ 10. filter() → Filter values
nums = [1, 2, 3, 4]
evens = list(filter(lambda x: x % 2 == 0, nums))
print(evens) # [2, 4]

Class and object in Python
 A class is a blueprint or template for creating objects.

●​ It defines attributes (variables/data) and methods (functions/behavior).
●​ Doesn’t hold actual data itself — only describes how objects should look/behave.

Class
A class is a blueprint or a template for creating objects. It defines a set of attributes (variables) and methods
(functions) that the objects created from it will possess.Classes encapsulate data and behavior into a single unit,
promoting code organization and reusability. In essence, a class describes what an object of that type will be and
what it can do.
An object is an instance of a class. It is a concrete realization of the blueprint defined by the class. Each object
created from a class will have its own distinct set of attribute values, while sharing the same methods defined in the
class. Objects are the entities through which you interact with the data and functionality defined in a class

class Dog:
 # Class attribute
 species = "Canis familiaris"

 # Initializer / Constructor method
 def __init__(self, name, age):
 self.name = name # Instance attribute
 self.age = age # Instance attribute

 # Instance method
 def bark(self):
 return f"{self.name} says Woof!"

Creating objects (instances) of the Dog class
my_dog = Dog("Buddy", 3)
your_dog = Dog("Lucy", 5)

Accessing attributes and calling methods through objects
print(f"{my_dog.name} is a {my_dog.species} and is {my_dog.age} years old.")
print(my_dog.bark())

print(f"{your_dog.name} is a {your_dog.species} and is {your_dog.age} years old.")
print(your_dog.bark())
In this example:

●​ Dog is the class.
●​ species is a class attribute, shared by all Dog objects.
●​ __init__ is the constructor method, used to initialize instance attributes when an object is created.
●​ name and age are instance attributes, unique to each Dog object.
●​ bark is an instance method, defining an action a Dog object can perform.
●​ my_dog and your_dog are objects (instances) of the Dog class. They each have their own name and age,

but share the species attribute and the barkmethod.

1. Instance Method

●​ The most common method type.
●​ Takes self as the first argument (represents the object instance).
●​ Can access & modify instance variables and class variables.

Example:
class Student:
 def __init__(self, name, marks):
 self.name = name
 self.marks = marks

 def show(self): # Instance method
 return f"{self.name} scored {self.marks} marks"

s1 = Student("Swapnil", 95)
print(s1.show()) # Swapnil scored 95 marks

2. Class Method (@classmethod)

●​ Declared using the @classmethod decorator.
●​ Takes cls as the first argument (represents the class, not the object).
●​ Can access and modify class variables, but not instance variables.

Example:
class Student:
 school_name = "ABC School" # class variable

 def __init__(self, name):
 self.name = name

 @classmethod
 def get_school(cls): # Class method
 return f"School: {cls.school_name}"

print(Student.get_school()) # School: ABC School
3. Static Method (@staticmethod)

●​ Declared using the @staticmethod decorator.
●​ Does not take self or cls as the first parameter.
●​ Cannot access or modify instance variables or class variables directly.
●​ Used for utility/helper functions that logically belong to the class.

Example:
class MathUtils:
 @staticmethod
 def add(a, b): # Static method
 return a + b

print(MathUtils.add(5, 7)) # 12

How do you import a module in python?
 In Python, modules are imported using the import statement. There are several ways to import a module or its
components: Import the entire module.This is the most common way to import a module. It makes all the functions,
classes, and variables defined within the module accessible by prefixing them with the module name. Import specific
items from a module.
import math
 print(math.pi)
 print(math.sqrt(25))

2. Import with alias (nickname)
import math as m
print(m.sqrt(25)) # 5.0
3. Import specific functions / classes
from math import sqrt, pi
print(sqrt(9)) # 3.0
print(pi) # 3.141592653589793

👉 No need to prefix with math..

1. import module:

●​ This statement imports the entire module and makes it available as a module object in the current
namespace.

●​ To access any function, class, or variable within the module, you must prefix it with the module name.

import math
 print(math.pi)
 print(math.sqrt(16))
2. from module import name:

●​ This statement imports specific names (functions, classes, or variables) directly into the current namespace.
●​ You can then use these imported names directly without needing to prefix them with the module name.

 from math import pi, sqrt
 print(pi)
 print(sqrt(25))
One of the features of Python is that it allows users to organize their code into modules and packages, which are
collections of modules. The __init__.py file is a Python file that is executed when a package is imported. In this
article, we will see what is __init__.py file in Python and how it is used in Python.
What Is __Init__.Py File in Python?
The __init__.py file is a Python file that is executed when a package is imported. __init__.py is a special file used in
Python to define packages and initialize their namespaces. It can contain an initialization code that runs when the
package is imported. Without this file, Python won't recognize a directory as a package. It serves two main purposes:

●​ It marks the directory as a Python Package so that the interpreter can find the modules inside it.

●​ It can contain initialization code for the Package, such as importing submodules, defining variables, or
executing other code.

Syntax of Importing and Using __Init__.py File
To import a package or module, use the 'import' keyword followed by the package or module name. For instance,
importing module1 from the 'package' package is done with:
import mypackage.module1
Alternatively, use 'from' followed by the package/module name, and 'import' for specific functions, classes, or
variables. Example:
from mypackage.module1 import func1
__init__.py is a special Python file that turns a directory into a package.

●​ It can be empty or contain initialization code.
●​ It controls package imports and exposure of modules.
●​ Before Python 3.3 it was mandatory, now optional due to namespace packages, but still widely used.

what are python built-in modules(os,sys,datetime)?

Module Purpose Common Use Cases

os OS-level operations File handling, environment variables, directory management

sys Interpreter control Command-line args, exiting, modifying module search path

https://www.geeksforgeeks.org/python/python-programming-language-tutorial/
https://www.geeksforgeeks.org/python/python-modules/
https://www.geeksforgeeks.org/python/import-module-python/

datetime Date/time handling Scheduling, logging, formatting, time arithmetic

 1. os Module
👉 Used for interacting with the Operating System.

●​ File and directory operations.
●​ Environment variables.
●​ Process management.

eg.
import os
print(os.name) # 'posix' (Linux/Mac), 'nt' (Windows)
print(os.getcwd()) # Get current working directory
os.mkdir("test_dir") # Create new directory

2. sys Module
👉 Used to interact with the Python interpreter itself.

●​ Access command-line arguments.
●​ Control Python runtime environment.
●​ Manage Python path.

eg.
import sys
print(sys.version) # Python version
print(sys.argv) # Command-line arguments (list)
sys.path.append("/mydir") # Add a new path for module search
sys.exit() # Exit the program

●​ Very useful in CLI tools and debugging.
●​ sys.argv is frequently asked (how to pass arguments to Python script).

3. datetime Module
👉 Used for working with dates and times.

●​ Getting current time.
●​ Formatting dates.
●​ Doing date arithmetic.

Eg
import datetime
now = datetime.datetime.now()
print(now) # 2025-10-01 12:30:45.123456
print(now.strftime("%Y-%m-%d")) # '2025-10-01'

Used in logging, scheduling, time-stamping, and data analytics.

how do you open file in python?
Opening a File in Python. We use the built-in open() function:
open(file, mode)

●​ file → path of the file (string)
●​ mode → tells Python how to open the file

Example 1: Reading a File
f = open("sample.txt", "r")
content = f.read()
print(content)
f.close()
Interview Points

1.​ Why use with open()?
○​ It’s safer → file closes automatically, even if error occurs.

2.​ What happens if file not found?
○​ open("file.txt", "r") → raises FileNotFoundError.

3.​ Difference between "w" and "a"?
○​ "w" overwrites, "a" appends.

difference between with open () and normal open().
●​ with open() is preferred because it uses a context manager, which guarantees file closure, prevents

resource leaks, and makes code cleaner.
●​ Normal open() works but requires explicit close(), which is error-prone if exceptions occur.

Example 1: Normal open()
f = open("sample.txt", "r")
data = f.read()
print(data)
f.close() # MUST close manually
 If you forget f.close(), the file stays open → can lock the file or waste system resources.
Example 2: with open() (Better Way)
with open("sample.txt", "r") as f:
 data = f.read()
 print(data) # file auto-closes here
No need to call f.close(). Python automatically closes the file when the block ends.

Aspect open() (normal) with open() (context manager)

Closing the
File

You must close manually using f.close(). If
you forget, file may stay open.

Automatically closes file when block ends (even if an
error occurs).

Error
Handling

If exception occurs before f.close(), file may
remain open → memory leak.

Ensures safe handling. File is closed automatically
using context manager protocol.

Readability Slightly more boilerplate. Cleaner, more Pythonic.

Best Practice Not recommended for production unless file
is very simple.

Recommended for all real-world usage.

how to read /write JSON files in python?
Reading and writing JSON files in Python is straightforward using the built-in json module. Here’s a clear explanation
with examples.
1. Import the json module
import js
2. Writing JSON to a file
Suppose you have a Python dictionary that you want to save as a JSON file:
data = {
 "name": "Swapnil",
 "age": 28,
 "skills": ["Python", "React", "Java"]
}

Write to a file
with open("data.json", "w") as json_file:
 json.dump(data, json_file, indent=4) # indent=4 makes it pretty-printed

✅ This will create a file data.json with content:
{
 "name": "Swapnil",
 "age": 28,
 "skills": [
 "Python",

 "React",
 "Java"
]
}
3. Reading JSON from a file
with open("data.json", "r") as json_file:
 data = json.load(json_file)

print(data)
print(data["name"]) # Swapnil
print(data["skills"]) # ['Python', 'React', 'Java']

difference between error and exceptions in python ?
1. Errors

●​ Definition: Errors are problems in the code that usually cannot be handled by the program and are detected
at compile-time or runtime.

●​ Cause: Syntax mistakes, incorrect usage of Python features, or serious problems like memory overflow.
●​ Examples:

○​ SyntaxError – Wrong Python syntax.
○​ IndentationError – Incorrect indentation.
○​ MemoryError – System ran out of memory.

Example:
SyntaxError
print("Hello World"

Output: SyntaxError: unexpected EOF while parsing

2. Exceptions

●​ Definition: Exceptions are runtime events that can potentially be handled by the program using try-except
blocks.

●​ Cause: Logical errors, invalid operations, or unexpected events during program execution.
●​ Examples:

○​ ZeroDivisionError – Division by zero.
○​ FileNotFoundError – Trying to open a non-existent file.
○​ ValueError – Invalid value type.

Example:
try:
 x = 10 / 0
except ZeroDivisionError:
 print("Cannot divide by zero!")

Output: Cannot divide by zero!

Feature Error Exception

Occurrence Usually detected at compile-time Occurs at runtime

Handling Cannot be handled Can be handled using try-except

Example SyntaxError, IndentationError ZeroDivisionError, ValueError

Cause Faulty code or system issue Invalid operations or unexpected events

●​ Errors → Serious problems, mostly unhandled, indicate bugs.
●​ Exceptions → Runtime issues that can be caught and handled gracefully.

 Assert Keyword in Python
In simpler terms, we can say that assertion is the boolean expression that checks if the statement is True or False. If
the statement is true then it does nothing and continues the execution, but if the statement is False then it stops the
execution of the program and throws an error.
In Python, assert is a statement used for debugging and for making sure that certain conditions hold true during the
execution of your code.

Example 1: Simple Assertion
x = 5
assert x > 0
print("x is positive")
Output:
x is positive
Example 2: Assertion Failure
x = -3
assert x > 0, "x must be positive"
Output:
AssertionError: x must be positive

●​ Assertions can be disabled when running Python with the -O (optimize) flag.
●​ Validate conditions → Ensure variables meet expected conditions.
●​ Should not be used for regular runtime error handling (use if or exceptions for that).
●​ Prevent invalid operations → Catch programming errors early.

Try/Except/Finally block usage in python?
Using try/except/finally is crucial in Python to handle runtime errors gracefully and release resources properly (like
files, network connections).
In Python, try / except / finally blocks are used for exception handling, allowing your program to handle errors
gracefully instead of crashing. Here’s a detailed explanation:
Syntax
try:
 # Code that may raise an exception
except SomeException as e:
 # Code to handle the exception
finally:
 # Code that will always run, whether exception occurred or not

●​ try → Block of code to test for exceptions
●​ except → Block to handle specific exception(s)
●​ finally → Block that runs always, useful for cleanup
●​

Basic Example
try:
 x = int(input("Enter a number: "))
 result = 10 / x
except ZeroDivisionError:
 print("Error: Cannot divide by zero!")
except ValueError:
 print("Error: Invalid input! Enter a number.")
finally:
 print("This block runs no matter what.")

Sample Output 1 (valid input):
Enter a number: 2
This block runs no matter what.

Sample Output 2 (division by zero):
Enter a number: 0
Error: Cannot divide by zero!
This block runs no matter what.

 Key Points

1.​ Multiple except blocks → Catch different types of exceptions.
2.​ except Exception as e → Catch any exception and get its message.
3.​ finally → Always executes, even if return or break occurs in try.

what is decorators ? Give an example
A decorator in Python is a function that takes another function as input and extends or modifies its behavior without
changing its source code.
They are commonly used for:

●​ Logging
●​ Authorization
●​ Caching
●​ Decorators are higher-order functions (functions that accept/return functions).
●​ You can stack multiple decorators on a function.
●​ Built-in decorators include @staticmethod, @classmethod, and @property.

A decorator is just a function that adds extra behavior to another function — without changing the original function’s
code.

Simple Example (No Arguments)
def my_decorator(func):
 def wrapper():
 print("🍕 Before the function runs")
 func()
 print("🍔 After the function runs")
 return wrapper

@my_decorator # This means: say_hello = my_decorator(say_hello)
def say_hello():
 print("Hello!")
say_hello()

Step by step what happens:
You write @my_decorator above say_hello.​
Python does this internally:​
say_hello = my_decorator(say_hello)

1.​
2.​ So now, say_hello is replaced with the wrapper function inside my_decorator.
3.​ When you call say_hello():

○​ It first prints “🍕 Before the function runs”
○​ Then it runs the original say_hello function → prints “Hello!”
○​ Finally, it prints “🍔 After the function runs”

Output:
🍕 Before the function runs
Hello!
🍔 After the function runs

Explain python garbage collection?

 Garbage Collection (GC) in Python is the process of automatically freeing memory that is no longer being used by
the program.
This prevents memory leaks and keeps your program efficient.
Python mainly uses Reference Counting and a Cyclic Garbage Collector to manage memory.

●​ Garbage Collection (GC) in Python is the process of automatically freeing memory that is no longer being
used by the program.

●​ This prevents memory leaks and keeps your program efficient.
●​ Python mainly uses Reference Counting and a Cyclic Garbage Collector to manage memory.

Reference counting
Python uses reference counting to manage memory. Each object keeps track of how many references point to it.
When the reference count drops to zero i.e., no references remain, Python automatically deallocates the object.
import sys

x = [1, 2, 3]
print(sys.getrefcount(x))

y = x
print(sys.getrefcount(x))

y = None
print(sys.getrefcount(x))

Output
2
3
2
Explanation:

●​ x is referenced twice initially (once by x, once by getrefcount()).

●​ Assigning y = x increases the count.

●​ Setting y = None removes one reference.
Problem with Reference Counting
Reference counting fails in the presence of cyclic references i.e., objects that reference each other in a cycle. Even if
nothing else points to them, their reference count never reaches zero. Example:
import sys
x = [1, 2, 3]
y = [4, 5, 6]

x.append(y)
y.append(x)
print(sys.getrefcount(x))
print(sys.getrefcount(y))
output
3
3
Explanation:

●​ x contains y and y contains x.

●​ Even after deleting x and y, Python won’t be able to free the memory just using reference counting, because
each still references the other.

Garbage collection for Cyclic References
Garbage collection is a memory management technique used in programming languages to automatically reclaim
memory that is no longer accessible or in use by the application. To handle such circular references, Python uses a
Garbage Collector (GC) from the built-in gc module. This collector is able to detect and clean up objects involved in
reference cycles.

To handle cycles, Python also has a cyclic garbage collector (in the gc module).
●​ It detects groups of objects that reference each other but are no longer accessible from your program.
●​ It then frees that memory.

👉 Example:
import gc
gc.collect() # Forces garbage collection cycle

